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On the Zeros of a Special Sequence of Polynomials 

By K. Mahler 

In memory of my teacher C. L. Siegel 

Abstract. The zeros of the polynomials P,,(z) = ,2A are studied and a number of open 
questions are discussed. 

Let n be a positive integer at least 3 (the cases n = 1 and n = 2 are trivial), and let 

Pn(z) be the polynomial 

Pn(z) Ez2 
k =O 

of degree 2"1-, so that 

Pn+l(Z) = Z + Pn(Z2) = P1(Z) ? Z2" 

When z lies in the unit disk Ui: z I < 1 in the complex plane, the sequence {P,j(z)} 
converges to the power series 

00 

f(Z) E Z2A 

k=O 

which is regular in U, but has the unit circle U: z 1 as its natural boundary and 
thus cannot be continued into the exterior Ue: I z > 1 of this circle (see, e.g., Mahler 

[5]). 
Since U is the circle of convergence of f(z), a general theorem by Jentsch ([3]; see 

also Landau [4]) implies that the set, S say, of all the zeros of all the polynomials 
P,1(z) is dense in U. 

Our aim is to discuss the distribution of the elements of S in the complex plane. 

1. All the polynomials Pn(z) have the trivial zero 

z = 0, 
and they further have just one real zero which lies in the open interval (- 1, 0) and 
which, as n tends to infinity, tends to the limit 

z = -0.658 626 7543..., 

which is the one real negative zero of f( z). All the other zeros of P,1( z) are nonreal 
and thus form 

- 2 - 
2 n2 -1 
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pairs of complex conjugate numbers. Denote by S(n), S,(n), and Se(n) the three 
sets of all these pairs of complex numbers that lie on U, in U,, and in U,e 
respectively. Let further N(n), N,(n), and Ne(n) be the numbers of pairs in S(n), 
S,(n), and Se( n), respectively; hence 

N(n) + N,(n) + Ne(n) = 2n-2 - 1. 

2. The zeros, - say, in the set S(n) are of particular interest and lie by the 
definition of S(n) on the unit circle U. These zeros can be divided into two classes 
C, and C2, where the elements of C, are roots of unity, while the elements of C2 are 
not. Here, for the various values of n, all three sets S(n), C,, and C2 may possibly be 
empty. 

A classical theorem by L. Fuchs ([2]; for a modern treatment see Evans [1]) allows 
us to determine all suffixes n for which the set C, is not empty. Assume that the zero 
E in C, is a primitive kth root of unity. Then 

P,( + ) 2 + 4 +... +21-1 = O 

is a Gaussian cyclotomic period of length n. For every odd, positive integer m denote 
by t(m) the smallest positive integer t such that 

2' _1 (mod m). 

By Fuchs's theorem the equation P,,( c) 0 holds if and only if there exists a prime p 
and a positive, odd integer k such that 

p21 k and n t(k)=pXt(k/p). 

Denote by Zk(Z) the k th cyclotomic polynomial. It is of degree 4(k), has rational 
integral coefficients and highest coefficient 1, has as its roots all the primitive kth 
roots of unity, and is irreducible over the rational field Q. 

By way of example, Fuchs's theorem implies that 

P6(z) is divisible by Z9(Z), 

P12(z) is divisible by Z9(z)Z45(z), 

P,8(z) is divisible by Z9(Z)Z27(Z)Z189(Z), 

P20(z) is divisible by Z25 ( Z )Z7 ( Z), 

P2,(z) is divisible by Z49(Z), 

etc. I am indebted to D. H. Lehmer for a large table of such factors of which these 
five cases are the first examples. 

We see from these factorizations that P6(z) has 3 pairs of complex conjugate 
cyclotomic roots on U, P12(z) has 15 pairs, P,8(z) has 66 pairs, P20(z) has 30 pairs, 
and P2,(z) has 21 pairs of such zeros. 

3. There remain the possible zeros in S(n) of class C2. The polynomial z-'P,,(z) 
has integral coefficients equal to 1; all its zeros are thus algebraic units. Hence the 
zeros of class C2 are algebraic units which are not roots of unity. There are algebraic 
units of this kind which have the absolute value 1; e.g., the number 
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where p is a primitive third root of unity, is an algebraic unit of absolute value 1 
which is not a root of unity. 

It is, however, not obvious whether such a number could in fact be a zero of one 
of the polynomials PJ(z). I therefore raise the following question. 

Problem 1. Do there exist suffixes n for which the equation Pn(z) = 0 has a nonreal 
root of absolute value 1 which is not a root of unity? 

4. Consider next the sets S1(n) and Se(n). Denote by M,(n) and m,(n) the 
maximum and the minimum of I - I extended over all the elements - of S,(n), and 
define similarly Me(n) and me(n) as the maximum and the minimum of 
extended over the elements E of Se(n). 

Using a programmable calculator (TI 59), I have for 3 < n < 8 determined all the 
complex zeros of Pn(z) and have also obtained selected zeros for larger values of n. 
For 3 < n < 8 the number of pairs of complex conjugate zeros of P,,(z) is given in 
the following little table. 

n= 3 4 5 6 7 8 

N,(n) = 0 1 2 3 8 13 

N(n)=- 0 0 0 3 0 0 
Ne(n) = 1 2 5 9 23 50 

Thus N,(n) is for these values of n smaller than Ne(n). 
Problem 2. Obtain estimates or asymptotic formulae for N,(n) and Ne(n) and decide 

whether always N,(n) < Ne(n). 

5. Consider next the minimum m,(n) and the maximum M,(n), using the known 
zeros of Pn(z). 

First, 

m1(4) = 0.957 636 6..., 

m1(5) = 0.931 481 7.... 

m, (6)=0.945 6191..., 

m,(7) = 0.942 296 3..., 

m ,(8)=0.942 3184..., 

m,(9) = 0.942 318 3.... 

As n tends to infinity, ml(n) tends to the absolute value 

0.942 318 380... 

of the pair of complex conjugate zeros 

0.120 314 841 .. i- 0.934 605 942... 

of f(z) which is closest to the origin z = 0. It is interesting to note that the successive 
values of ml(n) are oscillating. 
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Secondly, 

M,(4) = 0.957 636 6..., 

Ml (5) = 0.983 949 0. ..., 

M,(6) = 0.989 451 4. . ., 

M,(7) = 0.998 888 2..., 

M,(8) = 0.999 420 7.. ., 

MI (9) = 0.999 892 0..., 

Ml,((10) =0.999 9880.... 

With increasing n the maximum M,(n) tends rather rapidly to 1. If the zeros E of 

PJ( z) are written in the trigonometric form 

E p(cos ? i+ sin+), 

then the arguments 4 at which the maximum Mi(n) is attained do not seem to follow 
any simple law, being roughly 790 for n = 4, 1360 for n = 5, 66? for n = 6, 320 for 
n = 7, 1630 for n = 8, 550 for n = 9, 720 for n = 10, etc. 

6. We come next to the exterior minimum me(n) and the exterior maximum 
Me(n). Both tend rather rapidly to 1 as n tends to infinity. For the equation 
Pn( -) 0 O implies that 

-2 = _ (I + 2 - 
2'4-21 2 + + 2-2n-2 + i-2"-2 

Here we are dealing with zeros satisfying > I > 1. Hence the n - 1 terms on the 
right-hand side all have at most the absolute value 1, and it follows that 

Ic 1?(n -1)1/2 n2. le (n-l 

In fact,the convergence to 1 is more rapid. For the maximum Me(n) we obtain the 
table 

Me(3) = 1.210 607 7..., 

Me(4)= 1.156 072 1..., 

Me(5) = 1.093 832 5..., 

Me(6) = 1.052 891 9..., 

Me(7) = 1.028 946 0..., 

Me(8) = 1 .015 567 3.. .. 

Me(9) = 1.008 160 0..., 

Me(10) = 1.004 356 8 ..., 

etc. It seems that Me(n) is always attained at that pair of complex conjugate zeros of 
Pn(z) which is closest to the point z = 1. 

The minimum m e( n) tends more rapidly to 1 than Me( n), and again the argument 
4 of the zero - at which me(n) is attained does not seem to satisfy any simple law, 
beingroughly73? forn = 3, 1370 forn = 4, 370 forn = 5, 1110 forn = 6, 1460 for 
n =7, 1400 forn =8,1720 forn =9,1490 forn= 10, 160 forn= I1,etc. 
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For me(n) the following table is obtained. 

me(3)= 1.210 6077..., 

me(4) = 1.112 439 0..., 

me(5) = 1.019 212 4. .. 

me(6) = 1.011 422 2..., 

me(7) = 1.001 959 7.. .. 

me(8) = 1.000 420 0..., 

me(9) = 1.000 131 4..., 

me(10) = 1.000 038 0..., 

me( 1) = 1.000 018 6.... 

As far as my calculations go, the only zeros of the polynomials Pn(z) on the unit 
circle are roots of unity. Thus, if Problem 1 has a positive answer, Pn(z) will be at 
least of degree 2048, and the suffix n cannot be less than 12 and most probably is 
very much larger. 

7. So far only the absolute values of the zeros have been considered. It seems that 
the arguments of the zeros are much more uniformly distributed over the values 
from 00 to 360 degrees. Actually, since the complex zeros are symmetric in the real 
axis, it suffices to study the arguments between 00 and 1800. 

Number the arguments OPN of the successive zeros in the upper halfplane in order 
of increasing size, 

f l < 02 < ... < OP, where P = 2 n-2 - 1 

Linear regression statistics gives then for ON the following approximate formulae. 

n = 4: 31.12187 + 52.08187N, correlation coefficient 0.99795, 
n = 5: 14.14548 + 24.21492N, correlation coefficient 0.99876, 
n = 6: 6.65296 + 11.69893N, correlation coefficient 0.99923, 
n = 7: 3.19718 + 5.73965N, correlation coefficient 0.99984, 
n = 8: 1.55480 + 2.84169N, correlation coefficient 0.99995. 

At each step the new linear approximation formula is roughly half that of the 
preceding one. 

8. In my paper (Mahler [5]) I gave already the following three pairs of complex 
zeros of the function f(z). 

0.120 314 8 i 0.934 605 9, p = 0.942 322 3, O= 82.664 507 00, 
0.391 862 7 ? i 0.898 257 6, p = 0.980 011 8, O= 66.430 088 00, 

-0.685 206 2 ? i 0.670 534 1, p = 0.958 709 3, ( = 135.620 042 5?. 

Using zeros of the polynomials Pn(z) in Ui as a first approximation of zeros of f(z), I 
can now add the following five pairs of zeros of f(z); I have little doubt that there 
are infinitely many of them. 
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0.775 433 8 ? i 0.618 134 1, p = 0.991 658 9, 4 38.559 969 70, 

-0.369 210 6 i -0.921 653 2, p = 0.992 855 1, 111.830 843 60, 

0.747 459 9 +i -0.657 687 3, p = 0.995 614 8, p 41.344 431 40, 

0.081 933 5 ? i 0.993 671 7, p = 0.997 043 9, 4 85.286 324 70, 

-0.554 216 0 ? i 0.827 011 5, p = 0.995 541 8, 4 123.827 740 50. 
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